[bookmark: _GoBack]Architecture Definition Document Template

Business Architecture
Major Features: Describe the purpose of the system and its high level feature set. What will this system do? What current capabilities can we draw on? What must be repurposed or modified?
Strategic Fit: What aspect of the business and/or technology strategy does this effort and design support? How does it help realize strategic goals? If counter to the goals, how is that justified?
Business Drivers: Bullet list of the reasons for doing this project. Consider what money would be saved, what efficiencies would be created, what process improved, what customer opportunities enabled?
Business Priorities: Given a conflict of priorities, what is the Stakeholder Bias (Time to Market vs. Quality, Performance vs. Security, SLA vs. Costs).
Assumptions: Bullet list of assumptions that you have about the current state of the world, your organization, your systems that, if later proved false or changed, could dramatically impact this system. Consider People (what existing roles or new roles do you assume will be in place that you might require), Process (consider Procurement, HR, Finance, approval gates, ETO, GNOC, Security), Technology (consider stated drivers, standards, or architectural direction or patterns from leadership team).
Constraints: What are any applicable laws governing the data or processing of this system? Consider GDPR, other European personal data laws for example. List Applicable Regulations such as ADA, PCI, PII.
Risks: List business risks in doing the project as envisioned, risks to the customer or existing business prospects or processes, can it be maintained, operated properly, are staffing resources easy to find, is funding secured, countries/markets, what risks are inherent in trade-offs made, etc.
Impacts: What will this project or this architecture create in terms of Organizational, Training, Process?
Stakeholders: List internal & external business partners who are concerned with or impacted by this project
Governance: How will the project be governed? Is there an Executive Steering Committee, responsible stakeholder committee? What cadence and form will they take, with what explicit purpose?

Application Architecture
Applicable Standards & Policies: List of links to published guidelines and conventions for dev teams to follow. Ex: any internal policies, OTA/HTNG specs, PCI guidelines, ADA guidelines, etc, that you expect teams to follow.
Guidelines & Conventions: Links to published guidelines and conventions for dev teams to follow, most likely published internal standards documents, Google Java coding guidelines, JavaScript conventions, Code Quality guidelines, and the like.
User Interface: Anticipated impact of UI/UX to the project, existing design work, wireframe method, libraries to be used. You may have a Concept Model http://boxesandarrows.com/how-to-make-a-concept-model/ to reference.
Services: List services to be created or existing services to be reused, owners of those services. This one requires some real analysis beforehand.
Security: Security requirements & design: how data will be secured, encrypted, authorized, authenticated at rest, in transmission, or in processing. Use of OWASP Top Ten and how those are addressed. User roles and authentication methods and authorization. What security groups are required? How will credentials before stored, and keys managed? Will you use 2FA? Highlight security requirements for development such as bastion hosts. List transport or TLS/SSL requirements.
Availability: Target SLA in terms of 9’s uptime and how specifically the architecture will support such numbers. How recoverability, disaster recovery, and the like is being supported. What compensating actions are taken? Will a circuit breaker be used? What redundancy is there? What caching? Health check page? Multi-deployments?
Scalability & Performance: Number of transactions per second at this latency and CPU utilization. What is the unit of scale (container, VM, cluster)? What are the ways the application and services can scale through statelessness, Auto Scaling Groups? State thresholds.
Extensibility: APIs, ways that the application affords future change, how the application supports customizing per customer, how configurations are afforded.
Testability: How will this be tested, what tools will be used and what specific automation and targets will be in place? Include functional testing, regression testing, automation, tools used, chaos testing, resilience testing? Load testing plan?
Maintainability: What software guidance for developers will help make the code base easier, cleaner, simple to maintain in the long term? Code repository needs or project needs? What is the maintenance schedule anticipated or downtime for upgrades strategy?
Monitorability & Metrics: What tools and dashboards are required, logging requirements, how the software itself must support event publishing to increase visibility. What are the specific metrics that will indicate system uptime, health, proper performance? How will alerts be triggered at what threshold? Consider CPU, Memory, drive/file system volumes, Database process monitoring, logs, event logs, required procedures. These will end up in an operational playbook or hopefully getting automated.

Data Sources
Data Sources: Where the team should get key data from (existing services or databases or new)? Where is data stored? What database software will be used to store what data? Which instances of those databases should be used?
Data Strategy: What are hard limits of number of key data rows? What key data transaction size limits? What is tolerance for eventual consistency for key aspects of solution? Data Warehousing, Storage and Management Requirements. Transfer requirements. Long term storage.

Transactional Requirements: What are transaction requirements such as two-phase commit, eventual consistency? What data volumes must be supported? Data Movement policies and requiremen
Volatility: How often will key pieces of the data change?
Data Maintenance: How data will be maintained, data retention policies, scripting to offload, data restoration, how will data be populated for different environments for this application? Will data be truncated? At what interval? How will data be encrypted? Are there GDPR or PII/PCI requirements to be stated for dev teams or infrastructure admins?
Data Migration: How will data get into the system? Is connecting to a legacy system required? Is Golden Gate or Kafka or ETL or another tool in use? What time-period is anticipated for this? Will data have to be synchronized over a certain period time?
Data Volume: How many rows are anticipated to be added daily for the key services? What size database is anticipated? Will there be multiple data stores?
Logging: Log rotation policies, Splunk requirements and indexes
Analytics: What data must be exposed by the application to support business analytics. How that data must be exposed to support analytics tools.
Caching Strategy: Requirements for caching and the locations and technology to support caching

Infrastructure
Cloud & Data Center Requirements: Which data center will this be deployed to? How many? How will communication between data centers be supported? Will this be a cloud-based application? How will that be supported? What about cost management strategy? Deployment pipeline requirements? How will the infrastructure be stood up—are there Infrastructure as Code possibilities?>
Deployments: List how deployments will be executed. Any blue/green deployments, deployment pipeline, CI/CD.
Disaster Recovery: Is DR required by this solution? Will it be built-in DR based on data replication and redundancy?
Network: Describe and diagram Firewalls, gateways, load balancers, VIPs, zones to be used such as PCI, DMZs, routing, DNS specific needs.

